Skip to main content

Metabolic Engineering in Corynebacterium glutamicum

  • Chapter
  • First Online:
Corynebacterium glutamicum

Part of the book series: Microbiology Monographs ((MICROMONO,volume 23))

Abstract

Corynebacterium glutamicum strain development has adopted each metabolic engineering tool immediately upon its conception and has contributed to developing these tools further. In the last more than five decades, C. glutamicum strains have been selected and screened after undirected mutagenesis. This approach yielded industrially relevant strains, however, it was limited by the little insight that could be gained hampering transfer to related processes. Genetic engineering, the complete genome sequence and omics tools, systems biology and synthetic biology have closed this gap and provided a profound knowledge base to develop engineering strategies driven by metabolic insight. Quite recently, serendipitous untargeted approaches came into focus again since mutants selected classically e.g. using genetically encoded biosensors or by adaptive laboratory evolution could be understood when genome resequencing was combined with genetic and biochemical experiments. We will discuss metabolic engineering from the classical, genetic engineering, systems biology eras to the era of synthetic biology for C. glutamicum strain development and forecast the impact of the most recent methods such as CRISPR technology and adaptive laboratory evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn JH, Jang YS, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66

    Article  CAS  PubMed  Google Scholar 

  • Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T (2007) Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73:1308–1319

    Article  CAS  PubMed  Google Scholar 

  • Auchter M, Cramer A, Hüser A, Rückert C, Emer D, Schwarz P, Arndt A, Lange C, Kalinowski J, Wendisch VF, Eikmanns BJ (2011) RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotechnol 154:126–139

    CAS  PubMed  Google Scholar 

  • Averesch NJH, Krömer JO (2018) Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds—present and future strain construction strategies. Front Bioeng Biotechnol 26:32

    Article  Google Scholar 

  • Banta S, Swanson BA, Wu S, Jarnagin A, Anderson S (2002) Alteration of the specificity of the cofactor-binding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase A. Protein Eng 15:131–140

    Article  CAS  PubMed  Google Scholar 

  • Baritugo KA, Kim HT, David Y, Khang TU, Hyun SM, Kang KH, Yu JH, Choi JH, Song JJ, Joo JC, Park SJ (2018) Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution. Microb Cell Fact 17:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baumgart M, Unthan S, Rückert C, Sivalingam J, Grünberger A, Kalinowski J, Bott M, Noack S, Frunzke J (2013) Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology. Appl Environ Microbiol 79:6006–6015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumgart M, Huber I, Abdollahzadeh I, Gensch T, Frunzke J (2017) Heterologous expression of the Halothiobacillus neapolitanus carboxysomal gene cluster in Corynebacterium glutamicum. J Biotechnol 258:126–135

    Article  CAS  PubMed  Google Scholar 

  • Baumgart M, Unthan S, Kloß R, Radek A, Polen T, Tenhaef N, Müller MF, Küberl A, Siebert D, Brühl N, Marin K, Hans S, Krämer R, Bott M, Kalinowski J, Wiechert W, Seibold G, Frunzke J, Rückert C, Wendisch VF, Noack S (2018) Corynebacterium glutamicum chassis C1∗ building and testing a novel platform host for synthetic biology and industrial biotechnology. ACS Synth Biol 7:132–144

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed Engl 54:3328–3350

    Article  CAS  PubMed  Google Scholar 

  • Becker J, Kuhl M, Kohlstedt M, Starck S, Wittmann C (2018a) Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Microb Cell Fact 17:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becker J, Rohles CM, Wittmann C (2018b) Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng 50:122–141

    Article  CAS  PubMed  Google Scholar 

  • Bellmann A, Vrljić M, Pátek M, Sahm H, Krämer R, Eggeling L (2001) Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. Microbiology 147:1765–1774

    Article  CAS  PubMed  Google Scholar 

  • Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L (2013) Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation. Nucleic Acids Res 41:6360–6369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77:3300–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bommareddy RR, Chen Z, Rappert S, Zeng AP (2014) A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng 25:30–37

    Article  CAS  PubMed  Google Scholar 

  • Brune I, Jochmann N, Brinkrolf K, Hüser AT, Gerstmeir R, Eikmanns BJ, Kalinowski J, Pühler A, Tauch A (2007) The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum. J Bacteriol 189:2720–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bückle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ (2014) Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Appl Microbiol Biotechnol 98:297–311

    Article  PubMed  CAS  Google Scholar 

  • Burkovski A (2008) Corynebacteria: genomics and molecular biology. Caister Academic, Wymondham, UK

    Google Scholar 

  • Burmeister A, Hilgers F, Langner A, Westerwalbesloh C, Kerkhoff Y, Tenhaef N, Drepper T, Kohlheyer D, von Lieres E, Noack S, Grünberger A (2018) A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments. Lab Chip 19:98–110

    Article  PubMed  Google Scholar 

  • Buschke N, Schröder H, Wittmann C (2011) Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6:306–317

    Article  CAS  PubMed  Google Scholar 

  • Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C (2013) Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol J 8:557–570

    Article  CAS  PubMed  Google Scholar 

  • Camacho-Zaragoza JM, Hernandez-Chavez G, Moreno-Avitia F, Ramirez-Iniguez R, Martinez A, Bolivar F, Gosset G (2016) Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol. Microb Cell Fact 15:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chae TU, Ko YS, Hwang KS, Lee SY (2017) Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams. Metab Eng 41:82–91

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Zeng AP (2016) Protein engineering approaches to chemical biotechnology. Curr Opin Biotechnol 42:198–205

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Meyer W, Rappert S, Sun J, Zeng AP (2011) Coevolutionary analysis enabled rational deregulation of allosteric enzyme inhibition in Corynebacterium glutamicum for lysine production. Appl Environ Microbiol 77:4352–4360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Bommareddy RR, Frank D, Rappert S, Zeng AP (2014) Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl Environ Microbiol 80:1388–1393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Z, Rappert S, Zeng AP (2015) Rational design of allosteric regulation of homoserine dehydrogenase by a nonnatural inhibitor L-lysine. ACS Synth Biol 4:126–131

    Article  CAS  PubMed  Google Scholar 

  • Cho JS, Choi KR, Prabowo CPS, Shin JH, Yang D, Jang J, Lee SY (2017) CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng 42:157–167

    Article  CAS  PubMed  Google Scholar 

  • Choi JW, Yim SS, Kim MJ, Jeong KJ (2015a) Enhanced production of recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements). Microb Cell Fact 14:207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ (2015b) Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb Cell Fact 14:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi JW, Jeon EJ, Jeong KJ (2018) Recent advances in engineering Corynebacterium glutamicum for utilization of hemicellulosic biomass. Curr Opin Biotechnol 57:17–24

    Article  PubMed  CAS  Google Scholar 

  • Chung SC, Park JS, Yun J, Park JH (2017) Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum. Metab Eng 40:157–164

    Article  CAS  PubMed  Google Scholar 

  • Cleto S, Jensen JV, Wendisch VF, Lu TK (2016) Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol 5:375–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Este M, Alvarado-Morales M, Angelidaki I (2018) Amino acids production focusing on fermentation technologies—A review. Biotechnol Adv 36:14–25

    Article  PubMed  CAS  Google Scholar 

  • Di Gioia ML, Leggio A, Malagrinò F, Romio E, Siciliano C, Liguori A (2016) N-methylated α-amino acids and peptides: synthesis and biological activity. Mini Rev Med Chem 16:683–690

    Article  PubMed  CAS  Google Scholar 

  • Eberhardt D, Jensen JV, Wendisch VF (2014) L-citrulline production by metabolically engineered Corynebacterium glutamicum from glucose and alternative carbon sources. AMB Express 4:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eggeling L (2017) Exporters for production of amino acids and other small molecules. Adv Biochem Eng Biotechnol 159:199–225

    CAS  PubMed  Google Scholar 

  • Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Eikmanns BJ, Blombach B (2014) The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering. J Biotechnol 192:339–345

    Article  CAS  PubMed  Google Scholar 

  • Freudl R (2017) Beyond amino acids: use of the Corynebacterium glutamicum cell factory for the secretion of heterologous proteins. J Biotechnol 258:101–109

    Article  CAS  PubMed  Google Scholar 

  • Gruffaz C, Muller EE, Louhichi-Jelail Y, Nelli YR, Guichard G, Bringel F (2014) Genes of the N-methylglutamate pathway are essential for growth of Methylobacterium extorquens DM4 with monomethylamine. Appl Environ Microbiol 80:3541–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han SS, Kyeong HH, Choi JM, Sohn YK, Lee JH, Kim HS (2016) Engineering of the conformational dynamics of an enzyme for relieving the product inhibition. ACS Catalysis 6:8440–8445

    Article  CAS  Google Scholar 

  • Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H (2012) Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl Environ Microbiol 78:865–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heider SA, Wolf N, Hofemeier A, Peters-Wendisch P, Wendisch VF (2014a) Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum. Front Bioeng Biotechnol 2:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Heider SA, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T (2014b) Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Appl Microbiol Biotechnol 98:4355–4368

    Article  CAS  PubMed  Google Scholar 

  • Henke NA, Heider SA, Peters-Wendisch P, Wendisch VF (2016) Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Mar Drugs 14(7)

    Google Scholar 

  • Henke NA, Heider SAE, Hannibal S, Wendisch VF, Peters-Wendisch P (2017) Isoprenoid pyrophosphate-dependent transcriptional regulation of carotenogenesis in Corynebacterium glutamicum. Front Microbiol 8:633

    Article  PubMed  PubMed Central  Google Scholar 

  • Henke NA, Wiebe D, Pérez-García F, Peters-Wendisch P, Wendisch VF (2018) Coproduction of cell-bound and secreted value-added compounds: simultaneous production of carotenoids and amino acids by Corynebacterium glutamicum. Bioresour Technol 247:744–752

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa T, Shimizu H (2016) Recent advances in amino acid production by microbial cells. Curr Opin Biotechnol 42:133–146

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa T, Kim J, Shirai T, Furusawa C, Shimizu H (2012) Molecular mechanisms and metabolic engineering of glutamate overproduction in Corynebacterium glutamicum. Subcell Biochem 64:261–281

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann SL, Jungmann L, Schiefelbein S, Peyriga L, Cahoreau E, Portais JC, Becker J, Wittmann C (2018) Lysine production from the sugar alcohol mannitol: design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metab Eng 47:475–487

    Article  CAS  PubMed  Google Scholar 

  • Huber I, Palmer DJ, Ludwig KN, Brown IR, Warren MJ, Frunzke J (2017) Construction of recombinant Pdu metabolosome shells for small molecule production in Corynebacterium glutamicum. ACS Synth Biol 6:2145–2156

    Article  CAS  PubMed  Google Scholar 

  • Hutchison CA 3rd, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L, Pelletier JF, Qi ZQ, Richter RA, Strychalski EA, Sun L, Suzuki Y, Tsvetanova B, Wise KS, Smith HO, Glass JI, Merryman C, Gibson DG, Venter JC (2016) Design and synthesis of a minimal bacterial genome. Science 351(6280):aad6253

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M (2017) Lysine fermentation: history and genome breeding. Adv Biochem Eng Biotechnol 159:73–102

    PubMed  Google Scholar 

  • Ikeda M, Ohnishi J, Hayashi M, Mitsuhashi S (2006) A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. J Ind Microbiol Biotechnol 33:610–615

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer. Appl Environ Microbiol 75:1635–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imao K, Konishi R, Kishida M, Hirata Y, Segawa S, Adachi N, Matsuura R, Tsuge Y, Matsumoto T, Tanaka T, Kondo A (2017) 1,5-Diaminopentane production from xylooligosaccharides using metabolically engineered Corynebacterium glutamicum displaying beta-xylosidase on the cell surface. Bioresour Technol 245:1684–1691

    Article  CAS  PubMed  Google Scholar 

  • Jensen JV, Wendisch VF (2013) Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microb Cell Fact 12:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen JV, Eberhardt D, Wendisch VF (2015) Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. J Biotechnol 214:85–94

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, Sun B, Chen B, Xu X, Li Y, Wang R, Yang S (2017) CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun 8:15179

    Article  PubMed  PubMed Central  Google Scholar 

  • Jojima T, Noburyu R, Suda M, Okino S, Yukawa H, Inui M (2016) Improving process yield in succinic acid production by cell recycling of recombinant Corynebacterium glutamicum. Fermentation 2:5

    Article  CAS  Google Scholar 

  • Joo YC, You SK, Shin SK, Ko YJ, Jung KH, Sim SA, Han SO (2017) Bio-based production of dimethyl itaconate from rice wine waste-derived itaconic acid. Biotechnol J 12:11

    Article  CAS  Google Scholar 

  • Jorge JM, Leggewie C, Wendisch VF (2016) A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose. Amino Acids 48:2519–2531

    Article  CAS  PubMed  Google Scholar 

  • Jorge JMP, Pérez-García F, Wendisch VF (2017a) A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources. Bioresour Technol 245:1701–1709

    Article  CAS  PubMed  Google Scholar 

  • Jorge JMP, Nguyen AQ, Pérez-García F, Kind S, Wendisch VF (2017b) Improved fermentative production of gamma-aminobutyric acid via the putrescine route: systems metabolic engineering for production from glucose, amino sugars, and xylose. Biotechnol Bioeng 114:862–873

    Article  CAS  PubMed  Google Scholar 

  • Kabus A, Georgi T, Wendisch VF, Bott M (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl Microbiol Biotechnol 75:47–53

    Article  CAS  PubMed  Google Scholar 

  • Kallscheuer N, Vogt M, Marienhagen J (2017) A novel synthetic pathway enables microbial production of polyphenols independent from the endogenous aromatic amino acid metabolism. ACS Synth Biol 6:410–415

    Article  CAS  PubMed  Google Scholar 

  • Kelle R, Laufer B, Brunzema C, Weuster-Botz D, Krämer R, Wandrey C (1996) Reaction engineering analysis of L-lysine transport by Corynebacterium glutamicum. Biotechnol Bioeng 51:40–50

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld CA, Erbilgin O (2015) Bacterial microcompartments and the modular construction of microbial metabolism. Trends Microbiol 23:22–34

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld CA, Heinhorst S, Cannon GC (2010) Bacterial microcompartments. Annu Rev Microbiol 64:391–408

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kim TH, Kim Y, Lee HS (2004) Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J Bacteriol 186:3453–3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HT, Khang TU, Baritugo KA, Hyun SM, Kang KH, Jung SH, Song BK, Park K, Oh MK, Kim GB, Kim HU, Lee SY, Park SJ, Joo JC (2019) Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metab Eng 51:99–109

    Article  CAS  PubMed  Google Scholar 

  • Kind S, Neubauer S, Becker J, Yamamoto M, Völkert M, Abendroth G, Zelder O, Wittmann C (2014) From zero to hero—production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng 25:113–123

    Article  CAS  PubMed  Google Scholar 

  • Kirchner O, Tauch A (2003) Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104:287–299

    Article  CAS  PubMed  Google Scholar 

  • Kitade Y, Hashimoto R, Suda M, Hiraga K, Inui M (2018) Production of 4-hydroxybenzoic acid by an aerobic growth-arrested bioprocess using metabolically engineered Corynebacterium glutamicum. Appl Environ Microbiol 84(6):pii: e02587-17

    Article  Google Scholar 

  • Kloss R, Limberg MH, Mackfeld U, Hahn D, Grünberger A, Jäger VD, Krauss U, Oldiges M, Pohl M (2018) Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production. Sci Rep 8:5856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koffas M, Stephanopoulos G (2005) Strain improvement by metabolic engineering: lysine production as a case study for systems biology. Curr Opin Biotechnol 16:361–366

    Article  CAS  PubMed  Google Scholar 

  • Koma D, Yamanaka H, Moriyoshi K, Sakai K, Masuda T, Sato Y, Toida K, Ohmoto T (2014) Production of p-aminobenzoic acid by metabolically engineered Escherichia coli. Biosci Biotechnol Biochem 78:350–357

    Article  CAS  PubMed  Google Scholar 

  • Komati Reddy G, Lindner SN, Wendisch VF (2015) Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Appl Environ Microbiol 81:1996–2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kubota T, Watanabe A, Suda M, Kogure T, Hiraga K, Inui M (2016) Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct. Metab Eng 38:322–330

    Article  CAS  PubMed  Google Scholar 

  • Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF (2011) Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids. J Biotechnol 158:231–241

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Wendisch VF (2017a) Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J Biotechnol 257:211–221

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Wendisch VF (2017b) Production of amino acids—genetic and metabolic engineering approaches. Bioresour Technol 245:1575–1587

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Seo J, Kim ES, Lee HS, Kim P (2013) Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling. Biotechnol Lett 35:709–717

    Article  CAS  PubMed  Google Scholar 

  • Lee MJ, Palmer DJ, Warren MJ (2019) Biotechnological advances in bacterial microcompartment technology. Trends Biotechnol 37(3):325–336

    Article  CAS  PubMed  Google Scholar 

  • Leßmeier L, Wendisch VF (2015) Identification of two mutations increasing the methanol tolerance of Corynebacterium glutamicum. BMC Microbiol 15:216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leßmeier L, Pfeifenschneider J, Carnicer M, Heux S, Portais JC, Wendisch VF (2015) Production of carboN-13-labeled cadaverine by engineered Corynebacterium glutamicum using carboN-13-labeled methanol as co-substrate. Appl Microbiol Biotechnol 99:10163–10176

    Article  PubMed  CAS  Google Scholar 

  • Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  CAS  PubMed  Google Scholar 

  • Li H, Qiu T, Huang G, Cao Y (2010) Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb Cell Fact 9:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Z, Shen YP, Jiang XL, Feng LS, Liu JZ (2018) Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production. J Ind Microbiol Biotechnol 45:123–139

    Article  CAS  PubMed  Google Scholar 

  • Lindner SN, Calzad Iacute Az Ramirez L, Krüsemann J, Yishai O, Belkhelfa S, He H, Bouzon M, Döring V, Bar-Even A (2018) NADPH-auxotrophic E. coli: a sensor strain for testing in vivo regeneration of NADPH. ACS Synth Biol 7:2742–2749

    Article  CAS  PubMed  Google Scholar 

  • Litsanov B, Brocker M, Bott M (2012) Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol 78:3325–3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhang W, Zhao Z, Dai X, Yang Y, Bai Z (2017) Protein secretion in Corynebacterium glutamicum. Crit Rev Biotechnol. 37:541–551

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhang B, Liu YM, Yang KQ, Liu SJ (2018) New intracellular shikimic acid biosensor for monitoring shikimate synthesis in Corynebacterium glutamicum. ACS Synth Biol 7:591–601

    Article  CAS  PubMed  Google Scholar 

  • Lubitz D, Jorge JM, Pérez-García F, Taniguchi H, Wendisch VF (2016) Roles of export genes cgmA and lysE for the production of L-arginine and L-citrulline by Corynebacterium glutamicum. Appl Microbiol Biotechnol 100:8465–8474

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Zhang Q, Xu Q, Zhang C, Li Y, Fan X, Xie X, Chen N (2017) Systems metabolic engineering strategies for the production of amino acids. Synth Syst Biotechnol 2:87–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahr R, Gätgens C, Gätgens J, Polen T, Kalinowski J, Frunzke J (2015) Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metab Eng 32:184–194

    Article  CAS  PubMed  Google Scholar 

  • Mampel J, Buescher JM, Meurer G, Eck J (2013) Coping with complexity in metabolic engineering. Trends Biotechnol 31:52–60

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Li G, Chang Z, Tao R, Cui Z, Wang Z, Tang YJ, Chen T, Zhao X (2018) Metabolic engineering of Corynebacterium glutamicum for efficient production of succinate from lignocellulosic hydrolysate. Biotechnol Biofuels 11:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marin K, Krämer R (2007) Amino acid transport systems in biotechnologically relevant bacteria. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, Heidelberg, pp 289–326

    Chapter  Google Scholar 

  • Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM (2014) Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine. Appl Microbiol Biotechnol 98:5633–5643

    Article  CAS  PubMed  Google Scholar 

  • Matsushima Y, Hirasawa T, Shimizu H (2016) Enhancement of 1,5-diaminopentane production in a recombinant strain of Corynebacterium glutamicum by Tween 40 addition. J Gen Appl Microbiol 62:42–45

    Article  CAS  PubMed  Google Scholar 

  • Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013a) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6:131–140

    Article  PubMed  CAS  Google Scholar 

  • Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF (2013b) Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol 145:254–258

    Article  CAS  PubMed  Google Scholar 

  • Meyer F, Keller P, Hartl J, Gröninger OG, Kiefer P, Vorholt JA (2018) Methanol-essential growth of Escherichia coli. Nat Commun 9:1508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mihara H, Muramatsu H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N (2005) N-methyl-l-amino acid dehydrogenase from Pseudomonas putida. A novel member of an unusual NAD(P)-dependent oxidoreductase superfamily. FEBS J 272:117–123

    Article  CAS  Google Scholar 

  • Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71:2130–2135

    Article  CAS  PubMed  Google Scholar 

  • Mindt M, Risse JM, Gruß H, Sewald N, Eikmanns BJ, Wendisch VF (2018a) One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Sci Rep 8:12895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mindt M, Walter T, Risse JM, Wendisch VF (2018b) Fermentative production of N-methylglutamate from glycerol by recombinant Pseudomonas putida. Front Bioeng Biotechnol 6:159

    Article  PubMed  PubMed Central  Google Scholar 

  • Mindt M, Heuser M, Wendisch VF (2019a) Xylose as preferred substrate for sarcosine production by recombinant Corynebacterium glutamicum. Bioresour Technol 281:135–142

    Article  CAS  PubMed  Google Scholar 

  • Mindt M, Hannibal S, Heuser M, Risse JM, Sasikumar K, Nampoothiri KM, Wendisch VF (2019b) Fermentative production of N-alkylated glycine derivatives by recombinant Corynebacterium glutamicum using a mutant of imine reductase DpkA from Pseudomonas putida. Front Bioeng Biotechnol 7:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Minty JJ, Singer ME, Scholz SA, Bae CH, Ahn JH, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc Natl Acad Sci USA 110:14592–14597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muramatsu H, Mihara H, Kakutani R, Yasuda M, Ueda M, Kurihara T, Esaki N (2005) The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent Δ1-piperideine-2-carboxylate/Δ1-pyrroline-2-carboxylate reductase involved in the catabolism of d-lysine and d-proline. J Biol Chem 280:5329–5335

    Article  CAS  PubMed  Google Scholar 

  • Mustafi N, Grünberger A, Mahr R, Helfrich S, Nöh K, Blombach B, Kohlheyer D, Frunzke J (2014) Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PLoS One 9:e85731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naerdal I, Pfeifenschneider J, Brautaset T, Wendisch VF (2015) Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microb Biotechnol 8:342–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen AQD, Schneider J, Reddy GK, Wendisch VF (2015a) Fermentative production of the diamine putrescine: system metabolic engineering of Corynebacterium glutamicum. Metabolites 5:211–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen AQ, Schneider J, Wendisch VF (2015b) Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum. J Biotechnol 201:75–85

    Article  CAS  PubMed  Google Scholar 

  • Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281:12300–12307

    Article  CAS  PubMed  Google Scholar 

  • Oh YH, Choi JW, Kim EY, Song BK, Jeong KJ, Park K, Kim IK, Woo HM, Lee SH, Park SJ (2015) Construction of synthetic promoter-based expression cassettes for the production of cadaverine in recombinant Corynebacterium glutamicum. Appl Biochem Biotechnol 176:2065–2075

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi J, Mizoguchi H, Takeno S, Ikeda M (2008) Characterization of mutations induced by N-methyl-N′-nitro-N-nitrosoguanidine in an industrial Corynebacterium glutamicum strain. Mutat Res 649:239–244

    Google Scholar 

  • Oide S, Gunji W, Moteki Y, Yamamoto S, Suda M, Jojima T, Yukawa H, Inui M (2015) Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl Environ Microbiol 81:2284–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okai N, Takahashi C, Hatada K, Ogino C, Kondo A (2014) Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase. AMB Express 4:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464

    Article  CAS  PubMed  Google Scholar 

  • Park SH, Kim HU, Kim TY, Park JS, Kim SS, Lee SY (2014) Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat Commun 5:4618

    Article  CAS  PubMed  Google Scholar 

  • Patterson AW, Peltier HM, Ellman JA (2008) Expedient synthesis of N-methyl tubulysin analogues with high cytotoxicity. J Org Chem 73:4362–4369

    Article  CAS  PubMed  Google Scholar 

  • Pérez-García F, Wendisch VF (2018) Transport and metabolic engineering of the cell factory Corynebacterium glutamicum. FEMS Microbiol Lett 365:16

    Article  CAS  Google Scholar 

  • Pérez-García F, Peters-Wendisch P, Wendisch VF (2016) Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid. Appl Microbiol Biotechnol 100:8075–8090

    Article  PubMed  CAS  Google Scholar 

  • Pérez-García F, Max Risse J, Friehs K, Wendisch VF (2017a) Fermentative production of L-pipecolic acid from glucose and alternative carbon sources. Biotechnol J 12(7)

    Google Scholar 

  • Pérez-García F, Ziert C, Risse JM, Wendisch VF (2017b) Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources. J Biotechnol 258:59–68

    Article  PubMed  CAS  Google Scholar 

  • Pérez-García F, Jorge JMP, Dreyszas A, Risse JM, Wendisch VF (2018) Efficient production of the dicarboxylic acid glutarate by Corynebacterium glutamicum via a novel synthetic pathway. Front Microbiol 9:2589

    Article  PubMed  PubMed Central  Google Scholar 

  • Petit C, Kim Y, Lee SK, Brown J, Larsen E, Ronning DR, Suh JW, Kang CM (2018) Reduction of feedback inhibition in homoserine kinase (ThrB) of Corynebacterium glutamicum enhances L-threonine biosynthesis. ACS Omega 3:1178–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeifer E, Gätgens C, Polen T, Frunzke J (2017) Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium. Sci Rep 7:16780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Purwanto HS, Kang MS, Ferrer L, Han SS, Lee JY, Kim HS, Lee JH (2018) Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production. J Biotechnol 282:92–100

    Article  CAS  Google Scholar 

  • Radek A, Tenhaef N, Müller MF, Brüsseler C, Wiechert W, Marienhagen J, Polen T, Noack S (2017) Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved d-xylose utilization. Bioresour Technol 245:1377–1385

    Article  CAS  PubMed  Google Scholar 

  • Rohles CM, Gießelmann G, Kohlstedt M, Wittmann C, Becker J (2016) Systems metabolic engineering of Corynebacterium glutamicum for the production of the carboN-5 platform chemicals 5-aminovalerate and glutarate. Microb Cell Factories 15:154

    Article  CAS  Google Scholar 

  • Rytter JV, Helmark S, Chen J, Lezyk MJ, Solem C, Jensen PR (2014) Synthetic promoter libraries for Corynebacterium glutamicum. Appl Microbiol Biotechnol 98:2617–2623

    Article  CAS  PubMed  Google Scholar 

  • Schendzielorz G, Dippong M, Grünberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L (2014) Taking control over control: use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synth Biol 3:21–29

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88:859–868

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Eberhardt D, Wendisch VF (2012) Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol 95:169–178

    Article  CAS  PubMed  Google Scholar 

  • Schulte J, Baumgart M, Bott M (2017) Development of a single-cell GlxR-based cAMP biosensor for Corynebacterium glutamicum. J Biotechnol 258:33–40

    Article  CAS  PubMed  Google Scholar 

  • Schultz C, Niebisch A, Gebel L, Bott M (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76:691–700

    Article  CAS  PubMed  Google Scholar 

  • Seibold G, Auchter M, Berens S, Kalinowski J, Eikmanns BJ (2006) Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J. Biotechnol 124:381–391

    Article  CAS  PubMed  Google Scholar 

  • Sgobba E, Wendisch VF (2020) Synthetic microbial consortia for small molecule production. Curr Opin Biotechnol 62:72–79

    Article  CAS  PubMed  Google Scholar 

  • Sgobba E, Blöbaum L, Wendisch VF (2018a) Production of food and feed additives from non-food-competing feedstocks: valorizing N-acetylmuramic acid for amino acid and carotenoid fermentation with Corynebacterium glutamicum. Front Microbiol 9:2046

    Article  PubMed  PubMed Central  Google Scholar 

  • Sgobba E, Stumpf AK, Vortmann M, Jagmann N, Krehenbrink M, Dirks-Hofmeister ME, Moerschbacher B, Philipp B, Wendisch VF (2018b) Synthetic Escherichia coli-Corynebacterium glutamicum consortia for l-lysine production from starch and sucrose. Bioresour Technol 260:302–310

    Article  CAS  PubMed  Google Scholar 

  • Shi F, Li Y (2011) Synthesis of γ-aminobutyric acid by expressing Lactobacillus brevis-derived glutamate decarboxylase in the Corynebacterium glutamicum strain ATCC 13032. Biotechnol Lett 33:2469–2474

    Article  CAS  PubMed  Google Scholar 

  • Shi F, Jiang J, Li Y, Li Y, Xie Y (2013) Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis. J Ind Microbiol Biotechnol 40:1285–1296

    Article  CAS  PubMed  Google Scholar 

  • Shi F, Xie Y, Jiang J, Wang N, Li Y, Wang X (2014) Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH. Enzyme Microb Technol 61-62:35–43

    Article  CAS  PubMed  Google Scholar 

  • Shi F, Luan M, Li Y (2018) Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing γ-aminobutyrate in Corynebacterium glutamicum. AMB Express 8:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin JH, Park SH, Oh YH, Choi JW, Lee MH, Cho JS, Jeong KJ, Joo JC, Yu J, Park SJ, Lee SY (2016) Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Microb Cell Fact 15:174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin WS, Lee D, Lee SJ, Chun GT, Choi SS, Kim ES, Kim S (2018) Characterization of a non-phosphotransferase system for cis,cis-muconic acid production in Corynebacterium glutamicum. Biochem Biophys Res Commun 499:279–284

    Article  CAS  PubMed  Google Scholar 

  • Sindelar G, Wendisch VF (2007) Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Appl Microbiol Biotechnol 74:677–689

    Article  CAS  Google Scholar 

  • Sun H, Zhao D, Xiong B, Zhang C, Bi C (2016) Engineering Corynebacterium glutamicum for violacein hyper production. Microb Cell Fact 15:148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi C, Shirakawa J, Tsuchidate T, Okai N, Hatada K, Nakayama H, Tateno T, Ogino C, Kondo A (2012) Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzyme Microb Technol 51:171–176

    Article  CAS  PubMed  Google Scholar 

  • Takeno S, Hori K, Ohtani S, Mimura A, Mitsuhashi S, Ikeda M (2016) l-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene. Metab Eng 37:1–10

    Article  CAS  PubMed  Google Scholar 

  • Takors R, Bathe B, Rieping M, Hans S, Kelle R, Huthmacher K (2007) Systems biology for industrial strains and fermentation processes-example: amino acids. J Biotechnol 129:181–190

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi H, Wendisch VF (2015) Exploring the role of sigma factor gene expression on production by Corynebacterium glutamicum: sigma factor H and FMN as example. Front Microbiol 6:740

    Article  PubMed  PubMed Central  Google Scholar 

  • Taniguchi H, Henke NA, Heider SAE, Wendisch VF (2017) Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: application to production of β-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin. Metab Eng Commun 4:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A (2009) Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 82:115–121

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi N, Inui M (2013) Corynebacterium glutamicum—biology and biotechnology. Springer, Heidelberg

    Google Scholar 

  • Thu Ho NA, Hou CY, Kim WH, Kang TJ (2013) Expanding the active pH range of Escherichia coli glutamate decarboxylase by breaking the cooperativeness. J Biosci Bioeng 115:154–158

    Article  CAS  PubMed  Google Scholar 

  • Toyoda K, Teramoto H, Yukawa H, Inui M (2015) Expanding the regulatory network governed by the extracytoplasmic function sigma factor σH in Corynebacterium glutamicum. J Bacteriol 197:483–496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuge Y, Tateno T, Sasaki K, Hasunuma T, Tanaka T, Kondo A (2013) Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions. AMB Express 3:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tuyishime P, Wang Y, Fan L, Zhang Q, Li Q, Zheng P, Sun J, Ma Y (2018) Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab Eng 49:220–231

    Article  CAS  PubMed  Google Scholar 

  • Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R et al (2013) Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum. Appl Microbiol. Biotechnol 97:1679–1687

    Article  CAS  PubMed  Google Scholar 

  • Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Brühl N, Bartsch A, Bott M, Wiechert W, Marin K, Hans S, Krämer R, Seibold G, Frunzke J, Kalinowski J, Rückert C, Wendisch VF, Noack S (2015) Chassis organism from Corynebacterium glutamicum-a top-down approach to identify and delete irrelevant gene clusters. Biotechnol J 10:290–301

    Article  CAS  PubMed  Google Scholar 

  • Veldmann KH, Minges H, Sewald N, Lee JH, Wendisch VF (2019a) Metabolic engineering of Corynebacterium glutamicum for the fermentative production of halogenated tryptophan. J Biotechnol 291:7–216

    Article  CAS  PubMed  Google Scholar 

  • Veldmann KH, Dachwitz S, Risse JM, Lee JH, Sewald N, Wendisch VF (2019b) Bromination of L-tryptophan in a fermentative process with Corynebacterium glutamicum. Front Bioeng Biotechnol 7:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M (2014) Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab Eng 22:40–52

    Article  CAS  PubMed  Google Scholar 

  • Vogt M, Haas S, Polen T, van Ooyen J, Bott M (2015) Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes. Microb Biotechnol 8:351–360

    Article  CAS  PubMed  Google Scholar 

  • Vrljic M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular function: L-lysine export from Corynebacterium glutamicum. Mol Microbiol 22:815–826

    Article  CAS  PubMed  Google Scholar 

  • Wang EX, Ding MZ, Ma Q, Dong XT, Yuan YJ (2016) Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation. Microb Cell Fact 15:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Zhou Z, Cai H, Chen Z, Xu H (2017a) Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 44:1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Chen B, Fang Y, Tan T (2017b) Cofactor engineering for more efficient production of chemicals and biofuels. Biotechnol Adv 35:1032–1039

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu Y, Liu J, Guo Y, Fan L, Ni X, Zheng X, Wang M, Zheng P, Sun J, Ma Y (2018) MACBETH: multiplex automated Corynebacterium glutamicum base editing method. Metab Eng 47:200–210

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF (2003) Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol 104:273–285

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF (2007) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, Heidelberg

    Book  Google Scholar 

  • Wendisch VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30:51–58

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF (2019) Metabolic engineering advances and prospects for amino acid production. Metab Eng. https://doi.org/10.1016/j.ymben.2019.03.008

  • Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:74

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF, Brito LF, Gil Lopez M, Hennig G, Pfeifenschneider J, Sgobba E, Veldmann KH (2016) The flexible feedstock concept in Industrial Biotechnology: metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol 234:139–157

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF, Kim Y, Lee JH (2018a) Chemicals from lignin: recent depolymerization techniques and upgrading extended pathways. Curr Opin Green Sustain Chem 14:33–39

    Article  Google Scholar 

  • Wendisch VF, Mindt M, Pérez-García F (2018b) Biotechnological production of mono- and diamines using bacteria: recent progress, applications, and perspectives. Appl Microbiol Biotechnol 102:3583–3594

    Article  CAS  PubMed  Google Scholar 

  • Wieschalka S, Blombach B, Eikmanns BJ (2012) Engineering Corynebacterium glutamicum for the production of pyruvate. Appl Microbiol Biotechnol 94:449–459

    Article  CAS  PubMed  Google Scholar 

  • Wu CC, Chen TH, Liu BL, Wu LC, Chen YC, Tzeng YM, Hsu SL (2013) Destruxin B isolated from entomopathogenic fungus Metarhizium anisopliae induces apoptosis via a Bcl-2 family-dependent mitochondrial pathway in human nonsmall cell lung cancer cells. Evid Based Complement Altern Med 2013:548929

    Google Scholar 

  • Xu H, Zhou Z, Wang C, Chen Z, Cai H (2016) Enhanced succinic acid production in Corynebacterium glutamicum with increasing the available NADH supply and glucose consumption rate by decreasing H(+)-ATPase activity. Biotechnol Lett 38:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Seo SW, Jang S, Shin SI, Lim CH, Roh TY, Jung GY (2013) Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nat Commun 4:1413

    Article  CAS  PubMed  Google Scholar 

  • Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF (2008) Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. J Bacteriol 190:6458–6466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF (2009) Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. J Bacteriol 191:5480–5488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahoor A, Lindner SN, Wendisch VF (2012) Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Comput Struct Biotechnol J 3:e201210004

    Article  PubMed  PubMed Central  Google Scholar 

  • Zha J, Zang Y, Mattozzi M, Plassmeier J, Gupta M, Wu X, Clarkson S, Koffas MAG (2018) Metabolic engineering of Corynebacterium glutamicum for anthocyanin production. Microb Cell Fact 17:143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan M, Kan B, Dong J, Xu G, Han R, Ni Y (2018) Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply. J Ind Microbiol Biotechnol. https://doi.org/10.1007/s10295-018-2103-8

  • Zhang F, Keasling J (2011) Biosensors and their applications in microbial metabolic engineering. Trends Microbiol 19:323–329

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Shang X, Deng A, Chai X, Lai S, Zhang G, Wen T (2012) Genetic and biochemical characterization of Corynebacterium glutamicum ATP phosphoribosyltransferase and its three mutants resistant to feedback inhibition by histidine. Biochimie 94:829–838

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Zhou N, Liu YM, Liu C, Lou CB, Jiang CY, Liu SJ (2015) Ribosome binding site libraries and pathway modules for shikimic acid synthesis with Corynebacterium glutamicum. Microb Cell Fact 14:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou LB, Zeng AP (2015a) Engineering a lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum. ACS Synth Biol 4:1335–1340

    Article  CAS  PubMed  Google Scholar 

  • Zhou LB, Zeng AP (2015b) Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. ACS Synth Biol 4:729–734

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Wang C, Chen Y, Zhang K, Xu H, Cai H, Chen Z (2015a) Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum. Biotechnol Prog 31:12–19

    Article  PubMed  CAS  Google Scholar 

  • Zhou K, Qiao K, Edgar S, Stephanopoulos G (2015b) Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 33:377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu N, Xia H, Wang Z, Zhao X, Chen T (2013) Engineering of acetate recycling and citrate synthase to improve aerobic succinate production in Corynebacterium glutamicum. PLoS One 8:e60659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu N, Xia H, Yang J, Zhao X, Chen T (2014) Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system. Biotechnol Lett 36:553–560

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Both authors are particularly grateful to funding by the German-Korean MOBKOR program jointly funded by the National Research Foundation of Korea (NRF-2016K1A3A1A04940618) and the German Federal Ministry of Education and Research. VFW acknowledges funding by the EU and the state Nordrhein-Westfalen in the ERDF.NRW project “CKB-CLIB Kompetenzcluster Biotechnologie”, and by ERACoBiotech and FNR-BMELV in the project INDIE. JH LEE acknowledges funding by Basic Science Research Program through the National Research Foundation of Korea (NRF-2018R1D1A1B07047207) and the BB21+ Project in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker F. Wendisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wendisch, V.F., Lee, JH. (2020). Metabolic Engineering in Corynebacterium glutamicum . In: Inui, M., Toyoda, K. (eds) Corynebacterium glutamicum. Microbiology Monographs, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-39267-3_10

Download citation

Publish with us

Policies and ethics